

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems

Gary Blythe, Carl Richardson, URS Group Dick Rhudy, EPRI

Presentation Agenda

Project overview Gary Blythe

EPRI perspective Dick Rhudy

Background/prior Carl Richardson

research

Project plan Gary Blythe

Schedule Gary Blythe

Open issues All

Project Objective

Demonstrate at pilot scale the ability to use honeycomb catalysts to oxidize elemental mercury to a form that can be scrubbed in wet FGD systems, for periods of 14 months at each of two sites

Project Team Members

- URS Group
 - Design and construct pilot unit
 - Operate pilot unit, collect data
 - Conduct laboratory studies
 - Report results
- EPRI
 - Cash co-funding
 - In-kind cost sharing (Hg analyzer)
 - Project management

Project Team Members (cont'd)

- Great River Energy
 - Host Site 1
 - In-kind cost sharing (pilot unit installation, operation support)
- City Public Service of San Antonio
 - Host Site 2
 - In-kind cost sharing (pilot unit installation, operation support)

Project Organization

- Formed January 1999, consolidating Cooperative Power and United Power Association
- Based in Elk River, Minnesota
- Fourth largest G&T cooperative in the U.S.
- Second largest utility in Minnesota

- Serve 29 distribution cooperatives in Minnesota and Wisconsin
- Operations include 2,400-MW of generation
- Generation includes coal, lignite, gas, oil and RDF firing, wind power

- Founded in 1860, purchased by City of San Antonio in 1942
- Second largest municipal utility in the U.S.
- Serve City of San Antonio, Bexar County
- 2001 generating capacity of 5,027 MW (nuclear, coal, gas/oil)
- 27.6% of capacity is coal-fired (1400 MW)

 Overview of EPRI Hg research programs

 Discussion of how this project fits into EPRI Hg plan

EPRI Perspective Issues Impacting Hg Control

- Hg is present mainly as vapor in flue gas at ppb levels
- Reliable methods to sample/measure/speciate Hg still under development
- Impact of Hg control on balance of power plant poorly understood
- Stability and disposition of waste products not clear
- Cost effectiveness needs to be established

EPRI Perspective Mercury Control Options

EPRI Perspective Method of Approach

- Lab studies with simulated flue gas
- Field tests with small portable (1-10 acfm) and transportable (1000 to 4000 acfm) pilots
- Development of predictive models
- Full-scale demonstrations

Cost-Effective Hg Control Candidates and Criteria

- Low lifetime cost
 - Capital vs. O&M (including waste, energy, plant life)
 - Impact on other power plant components
 - Retrofit ease
- Robust
 - Applicable to wide range of sites
 - Integration/compatibility with other pollutant control

Future Plans

- Evaluate balance of plant impacts and demonstrate sorbent injection at full-scale
- (DOE PRDA w/ADA-ES, other power plant hosts)
 - Add'l removal across ESP, impact on opacity
 - Ash use and disposal
 - Impact on baghouse performance
 - Actual sorbent usage
 - Novel sorbents
- Refine predictive model and costs
- Assess sorbent regeneration, mercury recovery

Future Plans

- Study fundamentals of flyash/LOI and other novel sorbent Hg (ultrafine high capacity, clay and zeolite based, in-situ formed)
- Field test concepts to convert elemental to oxidized mercury with catalyst and chemical additives
- Field proof-of-concept evaluation of selected novel, low-cost mercury control concepts (DOE and utility funding)

Future Plans

- Evaluate multiple pollutant control potential and impacts
 - Measure particulate and trace air toxics (Pb, Ar, Se, Cr, Ni…)
 - Study potential for integration with NO_x/SO_x/
 Particulate control:
 - LNB, SCR/SNCR, reburn
 - Gas conditioning, humidification
 - Alkali injection
 - Wet ESP
 - Fabric development

Project Background

- Technology under development uses catalysts to oxidize elemental Hg in flue gas
- Oxidized mercury is scrubbed in wet FGD systems
- Initial concept development work by EPRI starting ~1993
- Further development as part of MegaPRDA beginning 1995

MegaPRDA Project (95260)

- Phase I (1995-1997)
 - Lab investigation of catalyst activity
 - Short-term (~day-long) proof of concept tests at pilot scale with pulse-jet fabric filter reactor
 - Pilot-scale evaluation of Hg removal across
 FGD absorber, fate of absorbed Hg
 - Field testing of bench-scale reactor
 (5 l/min) for evaluating catalyst life

MegaPRDA Project (95260)

- Phase II (1998-2001)
 - Long-term (5-6 month) field testing of
 I/min reactor for evaluating catalyst life
 - Testing at three coal-fired facilities
 - Texas lignite
 - Powder River Basin subbituminous
 - Eastern bituminous
 - Supporting laboratory studies
 - Screening candidate catalyst materials
 - Regeneration of spent catalysts

Schematic of Field Test Unit

Catalyst Types Tested

- Carbons
 - Coal- or lignite-derived
 - Biomass- or waste material-derived
 - Impregnated (sulfur, iodine)
 - Carbon fibers
- Metal-Based Catalysts
 - Iron-based
 - Pd-based
 - SCR catalysts
- Fly Ash (various coals)

Site 1 (Texas Lignite) Summary

- Saw high mercury oxidation percentages by several catalysts in short-term tests in lignite flue gas
- Catalyst deactivation observed within two months
- Second test with increased catalyst loading resulted in longer periods of activity

Site 1 Mercury Oxidation Data - 2nd Test

Site 1 Summary (cont'd)

- Required catalyst quantities were higher than desired (large catalyst volume)
- Deactivated catalysts were easily regenerated (CO₂ or N₂ at 700°F)
- Sulfur and/or selenium appear to be involved in the deactivation process

Site 2 (PRB) Catalyst Activity Results

Ability to Regenerate Catalysts from Site 2

Catalyst	Hg ⁰ Oxidation (%)	
	End of Long Term Test	Regenerated in Air, 700°F
Carbon #3	0	0
Carbon #6 – 1 st Bed	40	94
Carbon #6 – 2 nd Bed	78	87

Site 3 (Eastern Bit.) Summary

- Site 3 fires varied coal sources with a wide range of Hg content
- Site 3 fly ash appeared to adsorb and/or oxidize Hg⁰, bias measured Hg⁰ in gas to long-term apparatus
- Made measurement of catalyst performance difficult

Site 3 Inlet Elemental Hg Results

Site 3 Catalyst Activity Results

Ability to Regenerate Catalysts from Site 3 (Bituminous)

- Pd #1 showed high activity after regeneration
- Activity of Fe #1 did not increase
- Carbon #6 was not regenerated (high activity as recovered from field)

Commercial Catalyst Form Testing

- Focused on Pd #1, available in various forms from catalyst vendors
- Tested pellets and honeycombs at Site 2
- Honeycomb cell pitch same as clean-gas SCR
- Short-term honeycomb tests at Site 3

Commercial Catalyst Form Test Results - Site 2 (PRB)

Catalyst Form	Area Velocity (std ft/hr)	Oxidation of Hg ⁰ (%)
Pellet	110	95
Pellet	210	97
Honeycomb	110	56
Honeycomb	190	51

Commercial Catalyst Form - Predictive Model

- Based on Hg mass transfer from flue gas to the catalyst surface limiting oxidation rate
- Predicts pellets should achieve higher oxidation than honeycomb at equal external surface area
- Field results for pellets were near model predictions; honeycomb results fell short of predictions

Preliminary Economics for Catalystbased Process - Assumptions

- Pd #1 on honeycomb
- Base plant has a cold-side ESP followed by wet scrubber (no bypass), fires PRB coal
- Flue gas has 10 µg/Nm³ total Hg, 25% oxidation
- 80% overall Hg removal requirement

Preliminary Economics for Catalyst-based Process - Assumptions

- 4-inch catalyst depth at ESP outlet to achieve 81% Hg⁰ oxidation
- 3-year catalyst life, no regeneration
- Compare costs to previous EPRI estimates for carbon injection with COHPAC fabric filter retrofit

Preliminary Cost Estimate for 80% Total Hg Removal - \$1000

	Catalyst/ Scrubber	Carbon Injection/ COHPAC
Total Capital	\$1,950*	\$15,880
Levelized Capital	\$200*	\$1,620
Levelized O&M	\$2,130	\$2,540
Total Levelized Cost	\$2,330	\$4,160

^{*}Catalyst costs included in levelized O&M

Current Project Plan (41185)

- Task 1 Project Planning
- Task 2 Pilot Unit Design and Construction
- Task 3 Testing at Site 1
- Task 4 Testing at Site 2
- Task 5 Laboratory Testing
- Task 6 Management and Reporting

Task 1 - Project Planning

- Kick-off meeting
- Test plan
- Pilot unit design document
- Health and safety plan

Task 2 - Pilot Unit Design and Construction

- Complete detailed design
- Specify and procure instrumentation, valves, heat tracing
- Select and procure catalysts
- Select and manage a fabrication contractor
- Select and manage an insulation contractor
- Ship completed unit to GRE North Dakota plant

Pilot Unit Design

- Installs between particulate control and FGD on host plant
- Uses plant ID fan for motive force
- Will evaluate four catalysts in parallel
- Each catalyst chamber is up to 1 meter x 1 meter
- Flue gas flow rate is about 2000 acfm/chamber

Simplified P&ID for Pilot Unit

Pilot Unit Instrumentation

- For each catalyst chamber
 - Outlet temperature
 - Pressure drop across catalyst
 - Gauge pressure of chamber
 - Flue gas flow rate
- For pilot unit
 - EPRI semi-continuous Hg analyzer
 - Inlet temperature

Pilot Unit Side Elevation

Site 1 Candidate Catalysts

Catalyst Type	Supplier
Palladium on alumina	Prototech
SCR catalyst	Siemens, Haldor-Topsoe, others
Carbon based	ISGS, Corning
Fly-ash based	ISGS, Corning

Task 3 - Long-term Testing at Site 1

- Install and start-up pilot unit
- Install and place catalysts in service
- Operate pilot unit and catalysts up to 14 months
- Conduct intensive test periods (beginning, middle, and end of 14-month period)
- Conduct routine (~monthly) catalyst evaluations
- Remove catalysts and pilot unit, ship to San Antonio

Great River Energy's Coal Creek Station

- Two ND-lignite-fired units (550 net MW each)
- In-service dates 1979/1980
- Tangential boilers with low-NO_x burners
- Located in Underwood, ND (near Bismarck)
- Lignite quality (nominal values)
 - -6300 Btu/lb
 - -0.7% S (2.2 lb/MM Btu)
 - 0.1 ppm Hg, 100 ppm Cl

Coal Creek Station Emissions Controls

- ESP for particulate control (599 ft²/kacf SCA)
- ESP outlet Hg
 - 5-15 μg/Nm³ (25-55% oxidized) in EPRI tests
 - ICR data showed 8 μg/Nm³
- Wet FGD
 - Alstom (was CE) spray towers (4 per unit)
 - 90% design SO₂ removal efficiency across modules
 - Lime reagent, natural oxidation
 - Flue gas bypass (~30%)

Intensive Test Periods Beginning and End of Long-term Period

- Flue gas Hg characterization/CEM validation by Ontario Hydro (ESP outlet, outlet 4 catalysts, FGD outlet)
- Determine SO₂, NO oxidation across catalysts
- H₂SO₄, HCl, HF, metals at ESP out/pilot inlet
- Hg balance around ESP and FGD system
 - Hg in coal, fly ash, FGD liquor, byproduct solids
- Hg stability in FGD byproduct (air and water media)

Intensive Test Periods - Middle of Long-term Period

 CEM validation by Ontario Hydro (ESP outlet, outlet 4 catalysts)

Routine (~Monthly) Testing

- Hg speciation at the inlet and outlet of each of 4 catalyst beds
- Use EPRI semi-continuous Hg analyzer
- Budgeted for one trip per month
- Possible on-site catalyst regeneration, if needed

Task 4 - Long-term Testing at Site 2

- Install and start up pilot unit
- Install and start up catalysts
- Operate pilot unit and catalysts up to 14 months
- Conduct intensive test periods
 (3 beginning, middle, and end)
- Conduct routine (monthly) catalyst evaluations
- Remove catalysts and pilot unit, ship to storage

CPS' J.K. Spruce Plant

- 546-MW generator nameplate rating
- Tangential-fired boiler
- In-service date 1992
- Fires PRB, some pet coke co-firing
- Coal quality
 - -8400 Btu/lb
 - -0.5% S (1.2 lb/MM Btu)
 - 0.1 ppm Hg, 100 ppm Cl

Spruce Plant Emissions Controls

- Fabric filter for particulate control (2:1 A/C ratio)
- Wet FGD
 - Alstom (CE) spray towers (3 modules, 3 operate)
 - 70% overall SO₂ removal
 - Flue gas bypass (20-30%)
 - Limestone reagent, 100% natural oxidation
- Total Hg 9 μg/Nm³ at stack (estimate 7-8 μg/Nm³ elemental Hg at FF outlet)

Task 5 - Laboratory Testing

- Screen catalyst materials at simulated Site 1 and Site 2 conditions
- Investigate deactivation mechanisms
- Investigate regeneration conditions
- Possible laboratory regeneration of pilot catalysts, if needed

Task 6 - Management and Reporting

- Routine monthly reporting
- Site 1 and Site 2 Topical Reports
- Final Report
- Technical papers as appropriate
- Project review meetings

Project Schedule

Submit Test Plan	12/15/01
Submit Pilot Unit Design Document	12/15/01
Ship completed Pilot Unit	3/1/02
Start up Pilot Unit at Site 1	4/1/02
Conduct Catalyst Space Velocity tests, Initial Gas Characterization	4/15/02
End Site 1 Long-term Test, Final Space Velocity, Gas Characterization Tests	5/15/03
Site 1 Review/Site 2 Planning Meeting	6/1/03